# Describing Rotation And Translation In D

This post categorized under Vector and posted on June 25th, 2019.

06.04.2019 Rotation in 3D That works in 2D while in 3D we need to take in to account the third axis. Rotating a vector around the origin (a point) in 2D simply means rotating it around the Z-axis (a line) in 3D since were rotating around Z-axis its coordinate should be kept constant i.e. 0 (rotation happens on the XY plane in 3D).Details. Please note that rotation formats vary. For quaternions it is not uncommon to denote the real part first. Euler angles can be defined with many different combinations (see definition of Cardan angles).This form will allow you to rotate a vector along an arbitrary axis (in three dimensions) by an arbitrary angle. The rotation is performed clockwise if you are looking along the direction of the rotation axis vector.

Mastering the rotation matrix is the key to success at 3D graphics programming. Here we discuss the properties in detail.Eine Drehmatrix oder Rotationsmatrix ist eine reelle orthogonale Matrix mit Determinante 1. Ihre Multiplikation mit einem Vektor lsst sich interpretieren als (sogenannte aktive) Drehung des Vektors im euklidischen Raum oder als passive Drehung des Koordinatensystems dann mit umgekehrtem Drehsinn.Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation) and its angle the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix

Als Rotation oder Rotor bezeichnet man in der Vektoranalysis einem Teilgebiet der Mathematik einen bestimmten Differentialoperator der einem Vektorfeld im dreidimensionalen euklidischen Raum mit Hilfe der Differentiation ein neues Vektorfeld zuordnet.The rotation angle to achieve this is the angle between the projection of rotation axis in the yz plane and the z axis. This can be calculated from the dot product of the z component of the unit vector U and its yz projection. The sine of the angle is determine by considering the cross product.